9 research outputs found

    Impulse Control in Finance: Numerical Methods and Viscosity Solutions

    Get PDF
    The goal of this thesis is to provide efficient and provably convergent numerical methods for solving partial differential equations (PDEs) coming from impulse control problems motivated by finance. Impulses, which are controlled jumps in a stochastic process, are used to model realistic features in financial problems which cannot be captured by ordinary stochastic controls. The dynamic programming equations associated with impulse control problems are Hamilton-Jacobi-Bellman quasi-variational inequalities (HJBQVIs) Other than in certain special cases, the numerical schemes that come from the discretization of HJBQVIs take the form of complicated nonlinear matrix equations also known as Bellman problems. We prove that a policy iteration algorithm can be used to compute their solutions. In order to do so, we employ the theory of weakly chained diagonally dominant (w.c.d.d.) matrices. As a byproduct of our analysis, we obtain some new results regarding a particular family of Markov decision processes which can be thought of as impulse control problems on a discrete state space and the relationship between w.c.d.d. matrices and M-matrices. Since HJBQVIs are nonlocal PDEs, we are unable to directly use the seminal result of Barles and Souganidis (concerning the convergence of monotone, stable, and consistent numerical schemes to the viscosity solution) to prove the convergence of our schemes. We address this issue by extending the work of Barles and Souganidis to nonlocal PDEs in a manner general enough to apply to HJBQVIs. We apply our schemes to compute the solutions of various classical problems from finance concerning optimal control of the exchange rate, optimal consumption with fixed and proportional transaction costs, and guaranteed minimum withdrawal benefits in variable annuities

    Hedging Costs for Variable Annuities

    Get PDF
    A general methodology is described in which policyholder behaviour is decoupled from the pricing of a variable annuity based on the cost of hedging it, yielding two sequences of weakly coupled systems of partial differential equations (PDEs): the pricing and utility systems. The utility systems are used to generate policyholder withdrawal behaviour, which is in turn fed into the pricing systems as a means to determine the cost of hedging the contract. This approach allows us to incorporate the effects of utility-based pricing and factors such as taxation. As a case study, we consider the Guaranteed Lifelong Withdrawal and Death Benefits (GLWDB) contract. The pricing and utility systems for the GLWDB are derived under the assumption that the underlying asset follows a Markov regime-switching process. An implicit PDE method is used to solve both systems in tandem. We show that for a large class of utility functions, the two systems preserve homogeneity, allowing us to decrease the dimensionality of solutions. We also show that the associated control for the GLWDB is bang-bang, under which the work required to compute the optimal strategy is significantly reduced. We extend this result to provide the reader with sufficient conditions for a bang-bang control for a general variable annuity with a countable number of events (e.g. discontinuous withdrawals). Homogeneity and bang-bangness yield significant reductions in complexity and allow us to rapidly generate numerical solutions. Results are presented which demonstrate the sensitivity of the hedging expense to various parameters. The costly nature of the death benefit is documented. It is also shown that for a typical contract, the fee required to fund the cost of hedging calculated under the assumption that the policyholder withdraws at the contract rate is an appropriate approximation to the fee calculated assuming optimal consumption
    corecore